teoreme dasar kalkulus

Posted: April 25, 2011 in ABOUT -> mAtEmAtIkA

Teorema dasar kalkulus menyatakan bahwa turunan dan integral adalah dua operasi yang saling berlawanan. Lebih tepatnya, teorema ini menghubungkan nilai dari anti derivatif dengan integral tertentu. Karena lebih mudah menghitung sebuah anti derivatif daripada menerapkan definisi integral tertentu, teorema dasar kalkulus memberikan cara yang praktis dalam menghitung integral tertentu.

Teorema dasar kalkulus menyatakan:

Jika sebuah fungsi f adalah kontinu pada interval [a,b] dan jika F adalah fungsi yang mana turunannya adalah f pada interval (a,b), maka

\int_{a}^{b} f(x)\,dx = F(b) - F(a).

Lebih lanjut, untuk setiap x di interval (a,b),

F'(x) = \frac{d}{dx}\int_a^x f(t)\, dt = f(x).

Sebagai contohnya apabila kita hendak menghitung nilai integral \int_a^b x\, dx, daripada menggunakan definisi integral tertentu sebagai limit dari penjumlahan Riemann (lihat bagian atas), kita dapat menggunakan teorema dasar kalkulus dalam menghitung nilai integral tersebut. Anti derivatif dari fungsi f(x)= x\, adalah F(x)= \frac{1}{2} x^2 + C. Oleh sebab itu, sesuai dengan teorema dasar kalkulus, nilai dari integral tertentu \int_a^b x \,dx adalah:

\begin{align}
\int_{a}^{b} x\,dx &= F(b) - F(a) \\
&= \frac{1}{2} b^2 - \frac{1}{2} a^2 \\
\end{align}

Apabila kita hendak mencari luas daerah A dibawah kurva y=x pada interval [0,b], b>0, maka kita akan dapatkan:

\int_{0}^{b} x\,dx = \frac {b^2}{2}

Perhatikan bahwa hasil yang kita dapatkan dengan menggunakan teorema dasar kalkulus ini adalah sama dengan hasil yang kita dapatkan dengan menerapkan definisi integral tertentu (lihat bagian atas). Oleh karena lebih praktis, teorema dasar kalkulus sering digunakan untuk mencari nilai integral tertentu.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s